Portable Facial Recognition Jukebox Using Fisherfaces (Frj)
نویسندگان
چکیده
A portable real-time facial recognition system that is able to play personalized music based on the identified person’s preferences was developed. The system is called Portable Facial Recognition Jukebox Using Fisherfaces (FRJ). Raspberry Pi was used as the hardware platform for its relatively low cost and ease of use. This system uses the OpenCV open source library to implement the computer vision Fisherfaces facial recognition algorithms, and uses the Simple DirectMedia Layer (SDL) library for playing the sound files. FRJ is crossplatform and can run on both Windows and Linux operating systems. The source code was written in C++. The accuracy of the recognition program can reach up to 90% under controlled lighting and distance conditions. The user is able to train up to 6 different people (as many as will fit in the GUI). When implemented on a Raspberry Pi, the system is able to go from image capture to facial recognition in an average time of 200ms. Keywords—Facial Recognition; Raspberry Pi; Computer Vision; GNU/Linux Operating System; OpenCV; C++
منابع مشابه
Face recognition using nonparametric-weighted Fisherfaces
This study presents an appearance-based face recognition scheme called the nonparametric-weighted Fisherfaces (NW-Fisherfaces). Pixels in a facial image are considered as coordinates in a high-dimensional space and are transformed into a face subspace for analysis by using nonparametric-weighted feature extraction (NWFE). According to previous studies of hyperspectral image classification, NWFE...
متن کاملCombined Fisherfaces framework
In this paper, a Complex LDA based combined Fisherfaces framework, coined Complex Fisherfaces, is developed for face feature extraction and recognition. In this framework, Principal Component Analysis (PCA) and Kernel PCA (KPCA) are first used for feature extraction. Then, the resulting PCA-based linear features and KPCA-based nonlinear features are integrated by complex vectors and, Complex LD...
متن کاملA Unified Bayesian Framework for Face Recognition
This paper introduces a Bayesian framework for face recognition which unifies popular methods such as the eigenfaces and Fisherfaces and can generate two novel probabilistic reasoning models (PRM) with enhanced performance. The Bayesian framework first applies Principal Component Analysis (PCA) for dimensionality reduction with the resulting image representation enjoying noise reduction and enh...
متن کاملEnhanced Fisherfaces for Robust Face Recognition
This research features a new method for automatic face recognition robust to variations in lighting, facial expression and eyewear. The new algorithm named SKKUfaces (Sungkyunkwan University faces) employs PCA (Principal Component Analysis) and FLD (Fisher’s Linear Discriminant) in series similarly to Fisherfaces. The fundamental difference is that SKKUfaces effectively eliminates, in the reduc...
متن کاملEnhanced Fisher linear discriminant models for face recognition
We introduce in this paper two Enhanced Fisher Linear Discriminant (FLD) Models (EFM) in order to improve the generalization ability of the standard FLD based classifiers such as Fisherfaces. Similar to Fisherfaces, both EFM models apply first Principal Component Analysis (PCA) for dimensionality reduction before proceeding with FLD type of analysis. EFM-1 implements the dimensionality reductio...
متن کامل